首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1821篇
  免费   131篇
  国内免费   111篇
测绘学   43篇
大气科学   147篇
地球物理   258篇
地质学   252篇
海洋学   41篇
天文学   1222篇
综合类   28篇
自然地理   72篇
  2024年   2篇
  2023年   8篇
  2022年   13篇
  2021年   13篇
  2020年   18篇
  2019年   16篇
  2018年   23篇
  2017年   18篇
  2016年   14篇
  2015年   36篇
  2014年   40篇
  2013年   65篇
  2012年   55篇
  2011年   59篇
  2010年   68篇
  2009年   157篇
  2008年   163篇
  2007年   196篇
  2006年   154篇
  2005年   109篇
  2004年   108篇
  2003年   102篇
  2002年   99篇
  2001年   85篇
  2000年   93篇
  1999年   89篇
  1998年   91篇
  1997年   20篇
  1996年   26篇
  1995年   27篇
  1994年   13篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1990年   13篇
  1989年   10篇
  1988年   8篇
  1987年   3篇
  1986年   9篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2063条查询结果,搜索用时 21 毫秒
41.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   
42.
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large ensemble of field lines to build up a three-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σ Ori E. Since the flow along each field line can be solved independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment.
The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective (gravitational plus centrifugal) potential. However, a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to  ∼3000 km s−1  ) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.  相似文献   
43.
We study semi-analytically and in a consistent manner the generation of a mean velocity field     by helical magnetohydrodynamical (MHD) turbulence, and the effect that this field can have on a mean field dynamo. Assuming a prescribed, maximally helical small-scale velocity field, we show that large-scale flows can be generated in MHD turbulent flows via small-scale Lorentz force. These flows back-react on the mean electromotive force of a mean field dynamo through new terms, leaving the original α and β terms explicitly unmodified. Cross-helicity plays the key role in interconnecting all the effects. In the minimal τ closure that we chose to work with, the effects are stronger for large relaxation times.  相似文献   
44.
We present the largest sample of high-mass star-forming regions observed using submillimetre imaging polarimetry. The data were taken using the Submillimetre Common User Bolometer Array (SCUBA) in conjunction with the polarimeter on the James Clerk Maxwell Telescope (JCMT) in Hawaii. In total, 16 star-forming regions were observed, although some of these contain multiple cores. The polarimetry implies a variety of magnetic field morphologies, with some very ordered fields. We see a decrease in polarization percentage for seven of the cores. The magnetic field strengths estimated for 14 of the cores, using the corrected Chandrasekhar and Fermi (CF) method, range from <0.1 mG to almost 6 mG. These magnetic fields are weaker on these large scales when compared to previous Zeeman measurements from maser emission, implying the role of the magnetic field in star formation increases in importance on smaller scales. Analysis of the alignment of the mean field direction and the outflow directions reveals no relation for the whole sample, although direct comparison of the polarimetry maps suggests good alignment (to at least one outflow direction per source) in seven out of the 15 sources with outflows.  相似文献   
45.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   
46.
47.
We study the expected X-ray luminosity of stellar merger products several years after merger. The X-ray emission is assumed to result from magnetic activity. The extended envelope of the merger product possesses a large convective region and it is expected to rotate fast. The rotation and convection might give rise to an efficient dynamo operation; therefore we expect strong magnetic activity. Using well-known relations connecting magnetic activity and X-ray luminosity in other types of magnetically active stars, we estimate that the strong X-ray luminosity will start several years after merger, will reach a maximum of L x∼ 3 × 1030 erg s−1, and will slowly decline on a time-scale of ∼100 yr. We predict that X-ray emission from V838 Mon which erupted in 2002 will be detected in 2008 with 20 h of observation.  相似文献   
48.
49.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric  α2– Ω  dynamo model is derived to explore the characteristics of the axisymmetric  ( m = 0)  and the first non-axisymmetric  ( m = 1)  modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the  α2–Ω  and the  α–Ω  models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号